Abstract

AbstractGraphene and its derivatives are promising energy storage devices due to their high specific surface area, chemical and thermal durability and high charge transfer power. Still, their stacking and aggregate behavior can limit their practical application. To address this issue, reversible addition–fragmentation chain‐transfer (RAFT) polymerization as controlled radical polymerization was applied to functionalize the surface of graphene oxide with poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) via the ‘grafting from’ method. This strategy enhances the distance between graphene sheets by occupying physical volume while improving effective charge transfer through tertiary amine groups participating in the doping process. X‐ray diffraction was used to determine interlayer spacing after polymer grafting, which increased from 0.28 to 1.71 nm after polymer grafting. The hybridization of materials with diverse properties was used to enhance charge transfer capability for supercapacitor applications. PDMAEMA‐functionalized graphene oxide, nano‐manganese dioxide and polyaniline were combined to create a successful nanocomposite as electrode active material. The morphological structure and chemical composition of the synthesized nanocomposite were analyzed, and its electrochemical performance was evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The nanocomposite exhibited a maximum specific capacitance, energy density and power density of 364.72 F g−1 (at a scan rate of 50 mV s−1), 239.08 Wh kg−1 and 678.34 W kg−1, respectively. The final nanocomposite's energy storage capacity significantly increased compared to the individual components due to hybridization's synergistic impact, reducing charge transfer resistance. © 2024 Society of Industrial Chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call