Abstract

The efficient carrier design for transferring therapeutic genes into target cells as well as tracking the delivered agents has attracted lots of attention in the field of DNA-based therapeutics. Here, we demonstrate this concept by a fast and facilitated method using BSA gold nanocluster (BSA AuNcs) conjugated with chimeric peptide with ability of DNA binding/packaging, endosome disruption and cell nuclear localization. An extensive characterization of photoluminescence properties, electrophoresis mobility and size distribution of the nanocarrier demonstrating the stable complexes composed of plasmid DNA, chimeric peptide and BSA AuNcs were successfully formed through electrostatic interactions. In the hybrid complexes, chimeric peptide could effectively decrease the cytotoxicity of AuNcs as well as enhance internalization of plasmid harboring firefly luciferase gene into HEK 293T. The designed nanocarrier could be a promising vector in gene delivery systems for improved theranostics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call