Abstract

Highly efficient and easy recyclable monolithic photocatalysts with ideal separation/transport route for photogenerated charge carriers are much desired. In this work, a ZnO seed-induced growth approach is developed to fabricate a ternary monolithic photomembrane, that is, ZnS/CdS heterojunction nanorods in situ grow into the interspaces of multilayer reduced graphene oxide (rGO) sheets (denoted as ZnS/CdS/rGO). The monolithic ZnS/CdS/rGO photomembrane can serve as an efficient visible-light photoactive membrane for photocatalytic (PC) or photoelectrochemical (PEC) hydrogen generation. The fast electron transport of 1D CdS nanorods, the excellent electronic conductivity of multilayer stacked rGO sheets, the intense visible-light absorption of CdS, the unique hierarchical structure, and double heterojunctions (ZnS/CdS and CdS/rGO) efficiently boost the photogenerated electron-hole pairs separation and transfer across the interfacial domain of the photomembrane under visible-light irradiation. Furthermore, the superior stability and reusability of the photomembrane is achieved by the ideal process of photogenerated electron-hole pair separation/transfer, i.e., holes transfer to ZnS and electrons transfer to rGO to inhibit CdS from photocorrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.