Abstract

Transition metal borides are considered as promising electrocatalysts for water splitting due to their metallic conductivity and good durability. However, the currently reported monometallic and noncrystalline multimetallic borides only show generic and monofunctional catalytic activity. In this work, the authors design and successfully synthesize highly crystalline ternary borides, Mo2 NiB2 , via a facile solid-state reaction from pure elemental powders. The as-synthesized Mo2 NiB2 exhibits very low overpotentials for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), that is, 280 and 160mV to reach a current density of 10mAcm-2 , in alkaline media. These values are much lower from the ones observed over monometallic borides, that is, Ni2 B and MoB, and the lowest among all nonprecious metal borides. By loading Mo2 NiB2 onto Ni foams as both cathode and anode electrode for overall water splitting applications, a low cell voltage of 1.57 V is required to achieve a current density of 10mAcm-2 , comparable with the value required from the Pt/C||IrO2 /C couple (1.56 V). The proposed synthesis strategy can be used for the preparation of cost-effective, multi-metallic crystalline borides, as multifunctional electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.