Abstract

We report the computational investigation of a series of ternary X$_4$Y$_2$Z and X$_5$Y$_2$Z$_2$ compounds with X={Mg, Ca, Sr, Ba}, Y={P, As, Sb, Bi}, and Z={S, Se, Te}. The compositions for these materials were predicted through a search guided by machine learning, while the structures were resolved using the minima hopping crystal structure prediction method. Based on $\textit{ab initio}$ calculations, we predict that many of these compounds are thermodynamically stable. In particular, 21 of the X$_4$Y$_2$Z compounds crystallize in a tetragonal structure with $\textit{I-42d}$ symmetry, and exhibit band gaps in the range of 0.3 and 1.8 eV, well suited for various energy applications. We show that several candidate compounds (in particular X$_4$Y$_2$Te and X$_4$Sb$_2$Se) exhibit good photo absorption in the visible range, while others (e.g., Ba$_4$Sb$_2$Se) show excellent thermoelectric performance due to a high power factor and extremely low lattice thermal conductivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.