Abstract

The movement of microorganism cells in fluid influences various biotic processes, including septicity and marine life ecology. Many organic and medicinal applications need to look into the insight of mechanism in nanofluids containing a microbial suspension. The current paper concerns the bioconvection of a ternary hybrid nanofluid (Al2O3-Cu-CNT/water) flow containing motile gyrotactic microorganisms toward three different geometries (a flat plate, a wedge, and a cone) in the occurrence of natural convection, radiation, and heat source/sink. The Cattaneo–Christov theory is employed to develop the model. The equations are solved by using the “bvp4c function in MATLAB”. The influence of the crucial significant factors on the motile microorganisms’ density, velocity, temperature, nanoparticles’ concentration, microbe density gradient, and transmission rates of heat and mass is discussed. The results depict that the heat transmission rate is highest for the flow toward the cone, whereas the mass transmission rate and microbe density gradient are highest for the flow toward the wedge. In addition, the higher estimates of the thermal relaxation parameter corresponding to the Cattaneo–Christov theory act to enhance the rate of heat transmission. The results of the current study will be useful to many microbial-enhanced oil recovery systems, carriage processes, architectural design systems, medicinal fields that utilize nanofluids, and so on.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call