Abstract

Advanced oxidation processes stand as green alternatives for the decontamination of waste waters. Photocatalysis is an advanced oxidation process in which a semiconductor material absorbs photon energy and triggers redox reactions capable of degrading organic pollutants. Titanium dioxide (TiO2, titania) represents one of the most popular choices of photocatalytic materials, however the UV-activation of its anatase phase and its high charge recombination rate decrease its photocatalytic activity and weaken its potential. Graphene oxide is a 2D carbon nanomaterial consisting of exfoliated sheets of hexagonally arranged carbons decorated with oxygen- and hydrogen- functional groups. Composite nanomaterials consisting of titania nanoparticles and graphene oxide have proven to enhance the photocatalytic activity of pure TiO2. In this review, we present a thorough literature review of ternary nanocomposites based on synthesized or commercial titania nanoparticles and GO (or reduced GO) particularly used for the photodegradation of dyes. GO/TiO2 has been enriched primarily with metals, semiconductors and magnetic nanomaterials, proving a superior dye degradation performance and reusability compared to bare TiO2. Ongoing challenges and perspectives are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.