Abstract

Formation equilibria of copper(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Cu(AMBI)L (L = amino acid, amide, dicarboxylic acid or DNA constituents) have been investigated. Ternary complexes of amino acids or amides are formed by a simultaneous mechanism. Amino acids form the complex Cu(AMBI)L, whereas amides form two complex species Cu(AMBI)L and Cu(AMBI)(LH −1). The ternary complexes of copper(II) with AMBI and dicarboxylic acids or DNA units are formed by a stepwise mechanism, whereby binding of copper(II) to AMBI is followed by ligation of the dicarboxylic acids or DNA components. The values of Δ log K indicate that the ternary complexes containing aromatic amino acids are significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. This may be taken as an evidence for a stacking interaction between the aromatic moiety of AMBI and the aromatic side chains of the bio-active ligands. The solid complexes Cu(AMBI)L where L = 1,1-cyclobutanedicarboxylic acid (CBDCA) and malonic acid were separated and identified by elemental analysis and infrared spectroscopy and magnetic moment. The decomposition course and steps for the isolated complexes were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(AMBI) 2+ complex. The kinetic data is fitted assuming that the hydrolysis reaction proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by OH − ion. The second step involves the equilibrium formation of the hydroxo-complex Cu(AMBI)(MeGly)(OH) followed by intramolecular OH − attack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call