Abstract

We discovered a vector coated by γ-polyglutamic acid (γ-PGA) for effective and safe gene delivery. In order to develop a useful non-viral vector, we prepared several ternary complexes constructed with pDNA, polyethylenimine (PEI), and various polyanions, such as polyadenylic acid, polyinosinic–polycytidylic acid, α-polyaspartic acid, α-polyglutamic acid, and γ-PGA. The pDNA/PEI complex had a strong cationic surface charge and showed extremely high transgene efficiency although it agglutinated with erythrocytes and had extremely high cytotoxicity. Those polyanions changed the positive ζ-potential of pDNA/PEI complex to negative although they did not affect the size. They had no agglutination activities and lower cytotoxicities but most of the ternary complexes did not show any uptake and gene expression; however, the pDNA/PEI/γ-PGA complex showed high uptake and gene expression. Most of the pDNA/PEI/γ-PGA complexes were located in the cytoplasm without dissociation and a few complexes were observed in the nuclei. Hypothermia and the addition of γ-PGA significantly inhibited the uptake of pDNA/PEI/γ-PGA by the cells, although l-glutamic acid had no effect. These results strongly indicate that the pDNA/PEI/γ-PGA complex was taken up by γ-PGA-specific receptor-mediated energy-dependent process. Thus, the pDNA/PEI/γ-PGA complex is useful as a gene delivery system with high transfection efficiency and low toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call