Abstract

Bioadhesives have attracted more attention in surgery due to their easy operability and abilities of promoting wound closure and tissue healing. However, it is still a great challenge to develop a robust and biocompatible bioadhesive through a facile preparation method. Herein, a ternary complex coacervate comprised of tannic acid (TA), polyethylene glycol (PEG), and gelatin (TPG) is proposed as a novel bioadhesive, which is fabricated by simple physical blending method. The adhesion capacity of TPG was reinforced through programming the cross-linking network of TPG matrix and tailoring the interfacial interactions between matrix and tissue. Curing parameters (pH, temperature, and period) and gelatin content in TPG have crucial impacts on the final comprehensive adhesion performance. The adhesion strength of the optimized formulation, fabricated with 10% (m/m) gelatin (TPG10), was over 3 folds of TPG0 (without gelatin inclusion) after 24 h curing at pH 6 and 37 °C. The mechanism of the reinforced comprehensive adhesion was also investigated, suggesting TA provided tough interfacial adhesion, covalent cross-link of TA-gelatin improved mechanical properties, and the hydrogen bonds mediated dynamic cross-link between TA and PEG enabled the bulk matrix to dissipate energy upon deformation. Furthermore, the additional antibacterial activity, biocompatibility, and suitable degradability endowed TPG10 with desirable wound closure and tissue repairing efficacy on rat skin wound model. Such low-cost, readily prepared, and function-efficient bioadhesive could provide a versatile platform for tissue repair and regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.