Abstract

Developing high-efficient and stable electrocatalysts for oxygen evolution reaction (OER) is crucial for water splitting and metal-air batteries. Herein, ternary CoFe1−XMnX (0 <X < 1) layered double hydroxides (LDHs) grown on nickel form (NF) with nanosheet-nanowires (1D/2D) hierarchical nanostructure are synthesized. The introduction of Mn causes the change of crystal phase, morphology, and electronic structure of CoFe-LDH through electron transfer from Co/Fe to Mn, which provides the whole merit structural features and synergistic effect. Further experimental results exhibit that CoFe0.75Mn0.25-LDH possesses superior OER performance, which only requires overpotentials of 243 and 298 mV to reach 20 and 100 mA cm−2. The remodeling of LDHs in the OER process is also discussed to further explore the OER catalytic mechanism. In addition, CoFe0.75Mn0.25-LDH can also be utilized to the urea oxidation reaction (UOR), which requests a low potential of 1.367 V to reach 10 mA cm−2. A solar driven water splitting system is assembled and acquires the current density of 10 mA cm−2 at the low cell voltage of 1.58 V. This work offers an effective approach to boost the OER and UOR performance of CoFe-LDH based bifunctional electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.