Abstract

18-valence-electron (ve) rule is one important guide for us to design planar tetracoordinate carbon (ptC) species. Using the "polarization of ligands" strategy, the new pentaatomic ptC species CE2Ba2 (E = As, Sb) with 18 ve are designed in this work. Computer structural searches and high-level calculations reveal that the ptC CE2Ba2 (E = As, Sb) species are global minima (GMs) on the potential energy surfaces, whose C center is coordinated by the interspaced E and Ba atoms. CE2Ba2 (E = As, Sb) are also kinetically stable. Chemical bonding analyses reveal that the ptC core is stabilized by two localized C-E σ bonds, one delocalized five-center two-electron (5c-2e) σ bond and one delocalized 5c-2e π bond. One π and three σ bonds collectively conform to the 8-electron counting, which determines the stability of ptC CE2Ba2 (E = As, Sb) species. Interestingly, the delocalized 2π and 2σ electrons render the ptC systems π/σ double aromaticity. Additional 10 electrons contribute to peripheral lone pairs of E and E-Ba bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.