Abstract

Ordinary multiplication of natural numbers can be generalized to a ternary operation by considering discrete volumes of lattice hexagons. With this operation, a natural notion of ‘3-primality’ -primality with respect to ternary multiplication- is defined, and it turns out that there are very few 3-primes. They correspond to imaginary quadratic fields Q(√-n), n > 0, with odd discriminant and whose ring of integers admits unique factorization. We also describe how to determine representations of numbers as ternary products and related algorithms for usual primality testing and integer factorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.