Abstract

Achieving a finely tuned active layer morphology with a suitable vertical phase to facilitate both charge generation and charge transport has long been the main goal for pursuing the highly efficient bulk heterojunction all-polymer solar cells (all-PSCs). Herein, a solution to address the above challenge via synergistically combining the ternary blend strategy and the layer-by-layer (LbL) procedure is proposed. By introducing a synthesized polymer acceptor (PA ), PY-Cl, with higher crystallinity into the designed host acceptor PY-SSe-V, vertical phase distribution and molecular ordering of the LbL-type ternary all-PSCs can be improved in comparison to the LbL-type PM6/PY-SSe-V binary all-PSCs. The formation of the superior bulk microstructure can not only promote charge transport and extraction properties but also reduce energetic disorder and non-radiative recombination loss, thus improving all three photovoltaic parameters simultaneously. Consequently, the PM6/(PY-SSe-V:PY-Cl) ternary all-PSCs show the best efficiency of 18.14%, which is among the highest values reported to date for all-PSCs. This work provides a facile and effective LbL-type ternary strategy for obtaining high-efficiency all-PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call