Abstract
In this research, carbon nanotube (CNT)-modified plasmonic silver-strontium titanate (Ag@ SrTiO3) nanocomposites for the degradation of the organic dye were prepared by the sol-gel method. The characterization of all products was carried out using the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption test (BET), field emission-scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS), and transient photocurrent (TPC) studies. It was found that the incorporation of Ag in and introducing CNT into the SrTiO3 nanoparticles reduced the crystallite size to 21 nm and the band gap energy to 2.7 eV. The Reduced PL peak intensity, increased photocurrent value, and reduced charge transfer resistance approved that the Ag@SrTiO3@CNT nanocomposite had a greater charge transfer efficiency than other samples. The optimal dosage of the photocatalyst, for the complete degradation of 5 ppm of the methylene blue (MB) solution after 30 min of the visible light irradiation, was decided as 0.5 g/L. Besides, in the experimental environment, the Ag@SrTiO3@CNT sample illustrated the most significant photocatalytic performance of the degradation of methyl orange (MO) and Rhodamine B (RhB) dyes. The detailed mechanism and kinetics of the degradation procedure were clarified. Finally, the prepared system displayed increased stability and reusability in the entire cyclic degradation experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.