Abstract

A class of ternary 14-electron clusters, XB2Be2 (X = Si, Ge, Sn, Pb), have been computationally predicted with a planar tetracoordinate silicon (ptSi) unit, as well as its heavier ptGe/Sn/Pb congeners. These pentaatomic ptSi/Ge/Sn/Pb species are established as global-minimum structures via computer global searches, followed by electronic structure calculations at the PBE0-D3, B3LYP-D3, and single-point CCSD(T) levels. Molecular dynamics simulations indicate that they are also kinetically stable against isomerization or decomposition. Chemical bonding analyses show that the clusters have double 2π/2σ aromaticity. The latter concept underlies the stability of ptSi/Ge/Sn/Pb clusters, overriding the 14-electron count or its variants, such as the 18-electron rule. No sp3 hybridization occurs in these species, which naturally explains why they are ptSi/Ge/Sn/Pb (rather than traditional tetrahedral) systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.