Abstract

In most organisms, telomeres are extended by telomerase and contain GC-rich repeats. Drosophila telomeres are elongated by occasional transposition of specialized retroelements rather than telomerase activity, and are assembled independently of the sequence of the DNA termini. Recent work has shown that Drosophila telomeres are capped by a complex, we call terminin, which includes HOAP, HipHop, Moi and Ver; these are fast-evolving proteins that prevent telomere fusion, directly interact with each other, and appear to localize and function only at telomeres. With the possible exception of Ver that contains an OB fold domain structurally similar to the Stn1 OB fold, none of the terminin proteins is evolutionarily conserved outside the Drosophila species. Human telomeres are protected by the shelterin complex, which comprises six proteins that bind chromosome ends in a sequence-dependent manner. Shelterin subunits are not fast-evolving proteins and are not conserved in flies, but localize and function only at telomeres like the terminin components. Based on these findings, we propose that concomitant with telomerase loss Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent fashion, and that terminin is functionally analogous to shelterin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.