Abstract

Bismuth Selenide (Bi2Se3) is a topological insulator with a two-dimensional layered structure that enables clean and well-ordered surfaces to be prepared by cleaving. Although some studies have demonstrated that the cleaved surface is terminated with Se, as expected from the bulk crystal structure, other reports have indicated either a Bi- or mixed-termination. Low energy ion scattering (LEIS), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS) are used here to compare surfaces prepared by ex situ cleaving, in situ cleaving, and ion bombardment and annealing (IBA) in ultra-high vacuum (UHV). Surfaces prepared by in situ cleaving and IBA are well ordered and Se-terminated. Ex situ cleaved samples could be either Se-terminated or Bi-rich, are less well ordered and have adsorbed contaminants. This suggests that a chemical reaction involving atmospheric contaminants, which may preferentially adsorb at surface defects, could contribute to the non-reproducibility of the termination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.