Abstract

By combining differential conductance (dI/dV) spectroscopy with a scanning tunneling microscope and hybrid density functional theory simulations we explore the electronic characteristics of the (1 × 1) and (√3 × √3)R30° terminations of the Cu2O(111) surface close to thermodynamic equilibrium. Although frequently observed experimentally, the composition and atomic structure of these two terminations remain controversial. Our results show that their measured electronic signatures, such as the conduction band onset deduced from dI/dV measurements, the bias-dependent appearance of surface topographic features, as well as the work function retrieved from field emission resonances unambiguously confirm their recent assignment to a (1 × 1) Cu-deficient (CuD) and a (√3 × √3)R30° nano-pyramidal reconstruction. Moreover, we demonstrate that due to a different localization of the screening charges at these Cu-deficient terminations, their electronic characteristics qualitatively differ from those of the stoichiometric (1 × 1) and O-deficient (√3 × √3) terminations often assumed in the literature. As a consequence, aside from the topographic differences recently pointed out, also their electronic characteristics may contribute to a radical change in the common perception of the Cu2O(111) surface reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.