Abstract

Green synthesis has emerged as a pivotal facet of nanotechnology, garnering significant attention for its inherent safety and eco-friendly attributes. This study presents a novel approach utilizing phytochemicals derived from Terminalia bellirica (Gaertn.) Roxb. fruit extract for the environmentally benign synthesis of magnesium oxide (MgO) nanoparticles. The resultant MgO nanoparticles were comprehensively characterized using UV–visible spectroscopy, X-ray Diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Energy dispersive X-ray (EDX), and High-Resolution-Transmission Electron Microscope (HR-TEM). The synthesized MgO nanoparticles exhibited remarkable stability, evidenced by zeta potential of −8.84 mV and an average size of 73.41 nm. In an eco-physiological context, the application of MgO nanoparticles at a concentration of 5 mg/100 ml significantly enhanced shoot length (7.94±0.70 cm), root length (8.44±0.53 cm), moisture content (97.16±0.83%), and chlorophyll expression (18.34±0.99 mg/g fresh weight (FW)) in Trigonella foenum-graecum seedlings. Furthermore, the MgO nanoparticles demonstrated biocompatibility with soil bacteria and exhibited potent photocatalytic activity, achieving a 42% degradation efficiency of the organic dye methyl orange under UV irradiation for 60 minutes. In the realm of biomedical applications, MgO nanoparticles displayed dose-dependent cytotoxicity against human breast cancer cells (MCF-7), with an IC50 value of 37.39±0.05 µg/ml. Remarkably, MgO nanoparticles were also harnessed for their memcapacitive properties, showcasing excellent non-volatile memory characteristics, including endurance for 15,000 cycles and retention for 4000 seconds. In summary, this study underscores the multifunctional prowess of MgO nanoparticles synthesized through Terminalia bellirica fruit extract, spanning applications in plant physiology, environmental remediation, cancer therapeutics, and nanoelectronics. The environmentally conscious synthesis approach and diverse functionalities presented herein position these nanoparticles as future promising candidates for sustainable and versatile technological advancements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.