Abstract

A hallmark feature of non-Hermitian (NH) systems is the non-Hermitian skin effect (NHSE), in which the eigenenergy spectra of the system under open boundary conditions (OBC) and periodic boundary conditions (PBC) differ markedly from each other. In particular, the critical NHSE occurs in systems consisting of multiple non-Hermitian chains coupled in parallel where even an infinitesimally small inter-chain coupling can cause the thermodynamic-limit eigenenergy spectrum of the system to deviate significantly from the OBC spectra of the individual component chains. We overturn the conventional wisdom that multiple chains are required for such critical transitions by showing that such a critical effect can also be induced in a single finite-length non-Hermitian chain where its two ends are connected together by a weak terminal coupling to form a closed loop. An infinitesimally small terminal coupling can induce the thermodynamic-limit energy spectrum of the closed loop to switch from the OBC to the PBC spectrum of the chain. Similar to the critical NHSE, this switch occurs abruptly when the chain length exceeds a critical size limit. We explain analytically the underlying origin of the effect in a Hatano–Nelson chain system, and demonstrate its generality in more complex one-dimensional non-Hermitian chains. Our findings illustrate the generality of critical size-dependent effects in finite NH systems that arise from the interplay between the interfacial boundary conditions and the influence of edge localization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call