Abstract
The terminal voltage is easily affected by the characteristics of loads and variations in wind speed, loads and system parameters in a stand-alone wind energy conversion system. This paper presents a terminal voltage control scheme that combines the equivalent-input-disturbance (EID) and model predictive control (MPC). The total disturbance is observed and compensated in real time by the EID. A battery energy storage system based on MPC is employed to smooth the fluctuation and imbalance in power caused by the variation in wind speed and loads, thereby solving the problem of terminal voltage flicker and instability. The appropriate terminal voltage can be obtained using the proposed scheme, which is a simple design and offers good prospects for actual applications. The simulation results demonstrate the validity of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.