Abstract
In the last few years, the demand for tissue substitutes has increased and decellularized matrices has been widely proposed in the medical field to restore severe damages thanks to high biocompatibility and biomechanical properties similar to the native tissues. However, biological grafts represent a potential source of contamination and disease transmission; thus, there is the need to achieve acceptable levels of sterility. Several sterilization methods have been investigated with no consensus on the outcomes in terms of minimizing structural damages and preserving functional features of the decellularized matrix for transplantation in humans.With the aim of making decellularized tendons safe for clinical use, we evaluated the cytocompatibility, and biochemical, structural and biomechanical variations of decellularized equine tendons sterilized with peracetic acid or β-irradiation and differently wet- or dry- stored at 4°C or −80°C, respectively.Considering that both sterilization and long-term storage are crucial steps that could not be avoided, our results pointed at ionizing β-rays as terminal sterilization method for decellularized grafts followed by frozen dry storage. Indeed, this approach can maintain the integrity of collagen-based structures and can avoid biomechanical changes, thus making xenogeneic decellularized tendons a promising candidate for clinical use.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.