Abstract

The desired fuel rail pressure is a crucial factor for guaranteeing the gasoline direct injection (GDI) engine to work stably. In order to solve the rail pressure control problem, the detailed nonlinear model of GDI is derived and reasonable simplification of this model is carried out for the following controller design. Terminal sliding mode control strategy is proposed to design the rail pressure controller with Lyapunov stability. The designed approach with the fast terminal sliding mode surface makes the system have the capacity of global fast convergence and achieves precise tracking control. To demonstrate the validity of the designed control method, simulations are conducted by tracking the different reference rail pressures. Results show that the designed controller tracks the given reference accurately and has strong robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.