Abstract

Terminal rare-earth-metal imide complexes TptBu,MeLn(NC6H3iPr2-2,6)(dmap) of the mid-late rare-earth elements dysprosium and holmium were synthesized via double methane elimination of Lewis acid stabilized dialkyl precursors TptBu,MeLnMe(GaMe4) with primary aniline derivative H2NC6H3iPr2-2,6 (H2NAriPr). Exploiting the weaker Ln-CH3⋯[GaMe3] interaction compared to the aluminium congener, addition of the aniline derivative leads to the mixed methyl/anilido species TptBu,MeLnMe(HNAriPr) which readily eliminate methane after being exposed to the Lewis base DMAP ([double bond, length as m-dash]N,N-dimethyl-4-aminopyridine). Under the same conditions, [AlMe3]-stabilized dimethyl rare-earth-metal complexes transform immediately to Lewis acid bridged imides TptBu,MeLn(μ2-NC6H3Me2-2,6)(μ2-Me)AlMe2 (Ln = Dy, Ho). DMAP/THF donor exchange is accomplished by treatment of TptBu,MeLn(NC6H3iPr2-2,6)(dmap) with 9-BBN in THF while the terminal imides readily insert carbon dioxide to afford carbamate complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.