Abstract

Exosomes have received increasingly significant attention and have shown great clinical value as biomarkers for a number of diseases. However, there is still a lack of a highly sensitive and visualized method for the detection of exosomes in numerous samples simultaneously. Here, we developed a high-throughput, colorimetric and simple method to detect colorectal cancer (CRC) exosomes based on terminal deoxynucleotidyl transferase (TdT)-aided ultraviolet signal amplification. Anti-A33, a CRC exosomal protein marker, was selected as a capture probe, and a facility-prepared EpCAM (CRC exosomal protein) aptamer-Au-primer complex was used as a signal probe. After the CRC exosomes were captured onto the surface of 96-well plates, the primer was extended to the poly(biotin-adenine) chains with the help of TdT, resulting in an increase in the binding amount of avidin-modified horseradish peroxidase (Av-HRP) for H2O2-mediated oxidation of 3,3′,5,5′-tetramethyl benzidine (TMB) in enzyme-linked aptamer-sorbent assay (ELASA). The results showed that the incorporation of ploy(biotin-A) enabled approximately 10.4-fold signal amplification. This approach achieved a linear range of 9.75 × 103–1.95 × 106 particles/μL for CRC cell-derived exosomes. The feasibility of the developed assay was evaluated using clinical serum samples. CRC patients (n = 16) could be clearly and successfully distinguished from healthy individuals (n = 9). Furthermore, this proposed platform holds considerable potential for the detection of different targets, simply by changing the aptamer and antibody

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call