Abstract
To determine the ability of a mobile UV light unit to reduce bacterial contamination of environmental surfaces in patient rooms. An automated mobile UV light unit that emits UV-C light was placed in 25 patient rooms after patient discharge and operated using a 1- or 2-stage procedure. Aerobic colony counts were calculated for each of 5 standardized high-touch surfaces in the rooms before and after UV light decontamination (UVLD). Clostridium difficile spore log reductions achieved were determined using a modification of the ASTM (American Society for Testing and Materials) International E2197 quantitative disk carrier test method. In-room ozone concentrations during UVLD were measured. For the 1-stage procedure, mean aerobic colony counts for the 5 high-touch surfaces ranged from 10.6 to 98.2 colony-forming units (CFUs) per Dey/Engley (D/E) plate before UVLD and from 0.3 to 24.0 CFUs per D/E plate after UVLD, with significant reductions for all 5 surfaces (all [Formula: see text]). Surfaces in direct line of sight were significantly more likely to yield negative culture results after UVLD than before UVLD (all [Formula: see text]). Mean C. difficile spore log reductions ranged from 1.8 to 2.9. UVLD cycle times ranged from 34.2 to 100.1 minutes. For the 2-stage procedure, mean aerobic colony counts ranged from 10.0 to 89.2 CFUs per D/E plate before UVLD and were 0 CFUs per D/E plate after UVLD, with significant reductions for all 5 high-touch surfaces. UVLD cycle times ranged from 72.1 to 146.3 minutes. In-room ozone concentrations during UVLD ranged from undetectable to 0.012 ppm. The mobile UV-C light unit significantly reduced aerobic colony counts and C. difficile spores on contaminated surfaces in patient rooms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.