Abstract

Trichloroethylene (TCE), a commonly used industrial solvent and degreasing agent, is known to cause trichloroethylene hypersensitivity syndrome (THS) with multi-system damage, including skin, liver and kidney. Clinical evidence have shown that the kidney injury occurs in THS and our previous studies suggested that the terminal complement complex C5b-9 deposited in impaired renal tubules induced by TCE with unclear mechanisms. In the present study, we questioned whether activation of the complement system with renal deposition of C5b-9 contributes to TCE-induced kidney injury in THS. We established a BALB/c mouse model of TCE sensitization with or without pretreatment of exogenous CD59, a C5b-9 inhibitory protein. H&E staining, PAS staining, and biochemical detection of urinary proteins were performed to assess renal function. Deposition of C5b-9 and expression of CD59 were evaluated by immunohistochemistry. Sub-lytic effects of C5b-9 in tubular epithelial cells were assessed by lactate dehydrogenase (LDH) cytotoxicity assay. Expression of endocytosis receptors megalin and cubilin on proximal tubules were assessed by immunofluorescence and qRT-PCR. We found that TCE sensitization induced structural and functional changes of renal tubules in mice, associated with the deposition of sub-lytic C5b-9 on proximal tubular epithelial cells. TCE sensitization decreased proximal tubule uptake of filtered proteins and renal expression of megalin and cubilin, phenotypes that were attenuated by pretreatment with exogenous CD59. Overall, our findings reveal a novel mechanism underlying sub-lytic C5b-9 acting on megalin and cubilin, contributes to the renal tubules damage by TCE exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call