Abstract

Since gold is located well beyond the oxo wall, chemical species with terminal Au-N and Au-O units are extremely rare and limited to low coordination numbers. We report here that these unusual units can be trapped within a suitable organometallic frame. Thus, the terminal auronitrene and auroxyl derivatives [(CF3 )3 AuN]- and [(CF3 )3 AuO]- were identified as local minima by calculation. These open-shell, high-energy ions were experimentally detected by tandem mass spectrometry (MS2 ): They respectively arise by N2 or NO2 dissociation from the corresponding precursor species [(CF3 )3 Au(N3 )]- and [(CF3 )3 Au(ONO2 )]- in the gas phase. Together with the known fluoride derivative [(CF3 )3 AuF]- , they form an interesting series of isoleptic and alloelectronic complexes of the highly acidic organogold(iii) moiety (CF3 )3 Au with singly charged anions X- of the most electronegative elements (X=F, O, N). Ligand-field inversion in all these [(CF3 )3 AuX]- species results in the localization of unpaired electrons at the N and O atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call