Abstract
Octacalcium phosphate and collagen composite (OCPcol) promotes osteogenic differentiation and angiogenesis, thereby enhancing bone regeneration. Although a newly developed freeze-dried composite of OCPcol and teriparatide (OCPcolTPTD) reinforced bone regeneration more than OCPcol, the mechanism of bone regeneration remains unresolved. In this study, disks containing OCPcolTPTD, OCPcol, or β-tricalcium phosphate (β-TCP) col were inserted into rodents with calvarial bone defects, before euthanasia 4 weeks later. Immunohistochemical and histochemical analyses were performed on bone samples to evaluate bone matrix development, angiogenesis, and osteoclast and osteoblast localization. In the OCPcolTPTD and OCPcol groups, bone regeneration was observed at the surface of calvarial dura mater and around acidophilic granular cells with abundant collagenous fiber-containing cells. Furthermore, the newly formed bone in the OCPcolTPTD group showed a larger total area and individual separated area than the other groups. Various osteogenic proteins were detected in the regenerated bone and peri-bone tissues by histochemistry and immunohistochemistry. Although the expression of several osteogenic biomarkers in the OCPcolTPTD group after 4 weeks of implantation was significantly lower than that in the OCPcol group, new bone formation by OCPcolTPTD in the center of the defect, where bone regeneration is difficult, tended to be superior to that by OCPcol. These results suggest that OCPcolTPTD enhanced bone regeneration more evenly and homogenously than OCPcol. Impact statement Our study suggests that octacalcium phosphate and collagen (OCPcol) together with a TPTD enhances bone regeneration in rodents with calvarial bone defects. Furthermore, we believe that composite of OCPcol and teriparatide (OCPcolTPTD) could be developed into novel clinical technique for the regeneration or repair of bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.