Abstract
Exposure of cultured cerebellar neurons to the histamine H1 receptor antagonist terfenadine resulted in neuronal degeneration and death. Terfenadine neurotoxicity was dependent upon concentration and time of exposure. After 2 h exposure, 20 microM terfenadine reduced the number of surviving neurons by 75%, and as low as 10 nM terfenadine induced significant neurotoxicity after 5 days of exposure. Neuronal sensitivity to terfenadine changed with age in culture, and at 25 days in culture neurons appeared to be much less sensitive than at 5 or 9-17 days in culture. Neurotoxicity by terfenadine could not be prevented by high concentrations of histamine (5 mM), but it was significantly delayed by blocking NMDA or non-NMDA glutamate receptors with MK-801 or CNQX respectively, suggesting the involvement of excitatory transmission mediated by glutamate in the neurotoxicity induced by terfenadine in these neurons. We also found that the presence of terfenadine (5 microM) unveiled the potential excitotoxity of the non-NMDA receptor agonist AMPA (100 microM), and reduced the concentration of glutamate necessary to induce excitotoxicity, compared to untreated cultures. These results suggest a role for terfenadine in the modulation of the excitotoxic response mediated in cerebellar neurons through ionotropic glutamate receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.