Abstract

Anticoagulation factor I (ACF I) isolated from the venom of Agkistrodon acutus is an activated coagulation factor X-binding protein with marked anticoagulant activity. Present studies show that holo-ACF I assumes a compactly folded structure in the range of pH 5-6, in which the most interior Trp residues and quenchers are adjacent. Tb3+ ions can completely replace both Ca2+ ions in holo-ACF I, as determined by equilibrium dialysis. Although the two Tb3+ ions in Tb3+-ACF I have slightly different luminescence efficiencies, both have similar quenching effects on the intrinsic fluorescence, suggesting that probably there are same numbers of Trp residues close to both Tb3+-binding sites. Two Tb3+-binding sites with similar apparent Tb3+ association constant values, (1.69 +/- 0.02) x 10(7) M(-1) and (1.42 +/- 0.01) x 10(7) M(-1), respectively, were further identified through Tb3+ fluorescence titration. In addition, it has been confirmed from the titration of holo-ACF I and Tb3+-ACF I with NBS that only interior Trp residues are involved in the energy transfer to Tb3+ ions and that all accessible Trp residues located in the surface of holo-ACF I have similar affinity to NBS, while those located in the surface of Tb3+-ACF I have two different kinds of affinity to NBS, which strongly suggests a conformational change of holo-ACF I upon substitution of Tb3+ for Ca2+. The results show that although the Tb3+-altered conformation of ACF I cannot support the binding of Tb3+-ACF I with FXa, determined by nondenaturing PAGE, Tb3+ ions are effective and useful fluorescence probes to analyze the structures and properties of Ca2+-binding sites in ACF I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.