Abstract

A ratiometric fluorescence (FL) sensor was fabricated by coordinating 2, 6-pyridinedicarboxylic acid (DPA) sensitized Tb3+ (Tb-DPA) with NH2 and COOH on the surface of the N-doped carbon dots (N-CDs) for detecting Hg2+ in seafood. The sensor exhibited two FL emissions at 436 nm (N-CDs) as the response signal and at 543 nm (Tb-DPA) as the reference signal when excited at 290 nm. After adding Hg2+, the FL emission at 436 nm was significantly quenched and the FL emission at 543 nm was negligibly changed. The electron transfer (ET) between COO− of N-CDs and Hg2+ led to the FL quenching of N-CDs. The FL ratio (F436/F543) exhibited a good linear relationship in the Hg2+ concentrations of 1161.51 μM with a low limit of detection (LOD) of ~37 nM. The sensor presented high selectivity, satisfactory accuracy and precision toward Hg2+ in seafood with recoveries of 86.45–114.47% and RSDs of 0.20–1.92%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.