Abstract

Rapid, sensitive, and selective quantitative detection of pyridine dicarboxylic acid (DPA) as biomarker of anthrax spores is in great demand since anthrax spores are highly lethal to human beings and animals and also potential biological warfare agents. Herein, we prepared a ratiometric fluorescence lanthanide functionalized micelle nanoprobe by "one-pot" self-assembly, with an amphiphilic ligand containing β-diketone derivative which can "immobilize" terbium ions through the coordination interaction and a fluorophore as fluorescence reference (FR). The detection strategy was ascribed to Tb3+ ions in lanthanide functionalized micelle, which can be sensitized to emit the intrinsic luminescence upon addition of DPA due to the presence of energy transfer when DPA chromophore coordinated with Tb3+ ion. The fluorescence intensity of FR remained essentially constant, leading to ratiometric fluorescence response toward DPA. The results demonstrate that the terbium functionalized micelle was able to sensitively detect DPA with a linear relation in the range of 0 μM to 7.0 μM in aqueous solution, which also showed remarkable selectivity to DPA over other aromatic ligands. Our work paves a new way in the design of ratiometric fluorescence lanthanide functionalized micelle nanoprobes which can be promising for selective and sensitive detection of bacterial spores or biomolecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call