Abstract

Paroxetine is believed to be a substrate of CYP2D6. However, no information was available indicating drug interaction between paroxetine and inhibitors of CYP2D6. The aim of this study was to examine the effects of terbinafine, a potent inhibitor of CYP2D6, on pharmacokinetics of paroxetine. Two 6-day courses of either a daily 150-mg of terbinafine or a placebo, with at least a 4-week washout period, were conducted. Twelve volunteers took a single oral 20-mg dose of paroxetine on day 6 of both courses. Plasma concentrations of paroxetine were monitored up to 48 h after dosing. Compared with the placebo, terbinafine treatment significantly increased the peak plasma concentration (C(max)) of paroxetine, by 1.9-fold (6.4 +/- 2.4 versus 12.1 +/- 2.9 ng/ml, p < 0.001), and the area under the plasma concentration-time curve from zero to 48 h [AUC (0-48)] of paroxetine by 2.5-fold (127 +/- 67 vs 318 +/- 102 ng/ml, p < 0.001). Elimination half-life differed significantly (15.3 +/- 2.4 vs 22.7 +/- 8.8 h, p < 0.05), although the magnitude of alteration (1.4-fold) was smaller than C(max )or AUC. The present study demonstrated that the metabolism of paroxetine after a single oral dose was inhibited by terbinafine, suggesting that inhibition of CYP2D6 activity may lead to a change in the pharmacokinetics of paroxetine. However, further study is required to confirm this phenomenon at steady state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call