Abstract

Digital pathology via whole-slide imaging (WSI) systems has recently been approved for the primary diagnostic use in the US. Acquiring whole-slide images with spectral information at each pixel permits the use of multiplexed antibody labeling and allow for the measurement of cellularly resolved chemical information. Here, we report the development of a high-throughput terapixel hyperspectral WSI system using prism-based slit-array dispersion. We demonstrate a slit-array detection scheme for absorption-based measurements and a slit-array projection scheme for fluorescence-based measurements. The spectral resolution and spectral range in the reported schemes can be adjusted by changing the orientation of the slit-array mask. We use our system to acquire 74 5-megapixel brightfield images at different wavelengths in ∼1 s, corresponding to a throughput of 0.375 gigapixels / s. A terapixel whole-slide spatial-spectral data cube can be obtained in ∼45 min. The reported system is compatible with existing WSI systems and can be developed as an add-on module for whole-slide spectral imaging. It may find broad applications in high-throughput chemical imaging with multiple antibody labeling. The use of slit array for structured illumination may also provide insights for developing high-throughput hyperspectral confocal imaging systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call