Abstract

It was recently presented that the phase gradient metasurface can focus the reflection in terahertz range. However, narrow bandwidth and complex tuning method are still challenges. For instance, the size is difficult to be changed once the device is built. We propose a tunable double-layer graphene ribbons array (DLGRA) metasurface which has great potentials for applications in terahertz wavefront control. By changing the Fermi level of each graphene ribbon independently, the DLGRA separated by a bonding agent and a thin dielectric spacer can achieve nearly 2π phase shift with high reflection efficiency. A reflector which can focus terahertz waves over a broad frequency range is demonstrated numerically by the DLGRA. Intriguingly, through a lateral shift between the nearby graphene ribbons, the variation of coupling induces a shift of focusing frequency. Hence, this approach increases the frequency range to a higher degree than the fixed state. The proposed metasurface provides an effective way for manipulating terahertz waves in a broad frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call