Abstract

Femtosecond laser (FL) induced terahertz (THz) source is a new type of THz source based on injecting FL beams into ferromagnetic thin films by nonlinear effects to generate THz wave. It has a wider bandwidth compared to the traditional THz source, which provides higher flexibility and tunability in the application. In this paper, the three-temperature model and the stochastic Landau Lifshitz Gilbert equation at the atomic level are applied to simulate THz wave generation in Fe thin film induced by FL. Simulation results show that under a FL irradiance of 2 J m−2, the maximum demagnetization of the Fe thin film reaches 8.7%. The electromagnetic waves generated completely cover the THz band (0.1–10 THz), which fully satisfied the application requirements of the THz technology, verifying the feasibility of FL inducing the Fe thin film as a THz source. However, when the Fe thin film is overheated, it will be difficult for FL to excite valuable THz waves. Therefore, additional cooling devices are needed to keep the THz source in a workable temperature state, or to use ferromagnetic materials with magnetic moments that can quickly recover to saturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call