Abstract

Hundreds of nanometer-thick metal layers are used as electrical conductors in various technologies and research fields. The intensity of the radiation transmitted by such devices is a small fraction and is often neglected. Here, it is shown that intense terahertz time-domain spectroscopy can probe the absolute electro-optical properties of a 100 nm thick gold sample in transmission geometry without the need to apply electrical contacts or handle wires. The terahertz conductivity of the metal film agrees with that obtained from standard contact measurements of the static component within the error bars. This experimental approach can help to quantify the electrical properties of opaque and conductive materials such as the composite electrodes used in photovoltaic or electrochemical applications, and in the quality control of metal films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.