Abstract
We investigate transmission characteristics and sheet conductivity of mono- to multi-layer graphene deposited on quartz in the terahertz (THz) frequency region. The free carrier absorption and Fabry-Perot interference between graphene layers give rise to nonlinear decrease of THz transmission from 76.7% to 27% for mono- to 12-layer graphene. These phenomena are well explained with a modified theoretical model based on Drude conductivity. The optical sheet conductivity of multi-layer graphene, made by layer-by-layer random stacking of high-quality mono-layer graphene, at 1 THz exhibits two orders of magnitude higher values than the universal optical conductivity due to intraband transition of intrinsic graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.