Abstract

Gallium nitride (GaN) is one of the most technologically important semiconductors and a fundamental component in many optoelectronic and power devices. Low-resistivity GaN wafers are in demand and actively being developed to improve the performance of vertical GaN power devices necessary for high-voltage and high-frequency applications. For the development of GaN devices, nondestructive characterization of electrical properties particularly for carrier densities in the order of 1019 cm−3 or higher is highly favorable. In this study, we investigated GaN single crystals with different carrier densities of up to 1020 cm−3 using THz time-domain ellipsometry in reflection configuration. The p- and s-polarized THz waves reflected off the GaN samples are measured and then corrected based on the analysis of multiple waveforms measured with a rotating analyzer. We show that performing such analysis leads to a ten times higher precision than by merely measuring the polarization components. As a result, the carrier density and mobility parameters can be unambiguously determined even at high conductivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.