Abstract

Polyethylene (PE) is widely used in pipeline transportation owing to its excellent corrosion resistance, good stability, and ease of processing. As organic polymer materials, PE pipes inevitably undergo different degrees of aging during long-term use. In this study, terahertz time-domain spectroscopy was used to study the spectral characteristics of PE pipes with different degrees of photothermal aging, and the variation in the absorption coefficient with aging time was obtained. The absorption coefficient spectrum was extracted using uninformative variable elimination (UVE), successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), and random frog RF spectral screening algorithms, and the spectral slope characteristics of the aging-sensitive band were selected as the evaluation indices of the degree of PE aging. Based on this, a partial least squares aging characterization model was established to predict white PE80, white PE100 and black PE100 pipes with different aging degrees. The results showed that the prediction accuracy of the absorption coefficient spectral slope feature prediction model for the aging degree of different types of pipes was greater than 93.16% and the verification set error was within 13.5 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.