Abstract

We have efficiently generated tunable terahertz (THz) radiation using intracavity parametric down-conversion in gallium arsenide (GaAs). We used three types of microstructured GaAs to quasi-phase-match the interaction: optically contacted, orientation-patterned, and diffusion-bonded GaAs. The GaAs was placed in an optical parametric oscillator (OPO) cavity, and the THz wave was generated by difference-frequency mixing between the OPO signal and idler waves. The OPO used type-II phase-matched periodically poled lithium niobate as a gain medium and was synchronously pumped by a mode-locked laser at 1064 nm (7 ps and 200 nJ at 50 MHz). With center frequencies spanning 0.4-3.5 THz, 250-GHz bandwidth radiation was generated. We measured two orders of optical cascading generated by the mixing of optical and THz waves. In a doubly resonant oscillator (DRO) configuration, the efficiency increased by 21times over the singly resonant oscillator performance with an optical-to-THz efficiency of 10-4 and average THz power of 1 mW. The GaAs stabilized the DRO by a thermooptic feedback mechanism that created a quasi- continuous-wave train of THz pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call