Abstract

Unique effects of terahertz (THz)-wave–matter interaction push rapid progress in THz optoelectronics aimed at bridging the problematic THz gap. However, majority of modern methods of THz spectroscopy and imaging are still hampered by low spatial resolution. Common lens/mirror-based THz optics fails to overcome the Abbe barrier and usually provides resolution larger than a free-space wavelength λ (i.e., hundreds of micrometers or even few millimeters). To mitigate this difficulty, supperresolution THz imaging modalities were introduced recently, among which we particularly underline different methods of THz scanning-probe near-field microscopy. They not only rely on strong light confinement on sub-wavelength probes and provide resolution down to ∼10−1–10−3λ but also suffer from small energy efficiency or presume an interplay among imaging resolution, signal-to-noise ratio, and performance. In this paper, we consider reflection-mode THz solid immersion (SI) microscopy that offers some compromise between the high imaging resolution of 0.15λ and high energy efficiency, which is due to the absence of any subwavelength probe in an optical scheme. Recent achievements, challenging problems, and prospects of SI microscopy are overviewed with an emphasis on resolving the inverse problem and applications in THz biophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.