Abstract

<p indent="0mm">Terahertz detection plays an increasingly important role in various fields, such as astronomy, national defense, security checking, and biotechnology. With the development of technology, the sensitivity of terahertz detectors is continuously improving, and the detection of terahertz single photons has been demonstrated in recent years. In the terahertz band, owing to the low photon energy of terahertz photons and serious transmission losses in the atmosphere, research and development on terahertz single-photon detectors have faced significant technical challenges. In this article, we first introduce the operating mechanisms, main performance indicators, and measurement systems for terahertz single-photon detectors and identify the basic requirements for realizing terahertz single-photon detection. We then introduce several terahertz single-photon detectors, including semiconductor quantum dot, semiconductor quantum well, and superconducting quantum capacitance detectors. The history of the development, operating mechanisms, and key indicators of these terahertz single-photon detectors is also summarized. Noise equivalent power of the order of 10<sup>−21</sup> W/Hz<sup>1/2</sup> has been achieved using semiconductor quantum dot and quantum well detectors. Although both these have a large current response and dynamic range, their quantum efficiency is low. Superconducting quantum capacitance detectors have achieved single-photon detection at <sc>1.5 THz</sc> with a noise equivalent power better than 10<sup>−20</sup> W/Hz<sup>1/2</sup> and detection efficiency up to 90%. In addition, some terahertz detectors such as nanobolometers have shown potential for terahertz single-photon detection, and we introduce the operating mechanism and development status of these devices as well. We also analyze the prospects of terahertz single-photon detectors for applications in terahertz imaging, astronomical observations, and quantum information technology, highlighting some major international research projects and reported examples of such applications. We further summarize the advantages of terahertz single-photon detectors for these applications. Finally, we review the performance of terahertz single-photon detectors and discuss future development trends.

Highlights

  • CSIP探测器的工作原理量子点单光子探测器具有很高的灵敏度, 但是需 要工作在1 K以下极低温环境中, 且器件制备工艺复 杂, 一致性较差, 这限制了它的应用[29]. 为此, 2005年 Komiyama课题组[31]又提出了基于半导体双量子阱结 构的电荷敏感型红外光电晶体管(CSIP)探测器. 量子 阱是当两种带隙不同的半导体材料相间排列形成异质 结构时, 形成的具有明显量子限域效应的电子或空穴 的势阱.

  • 量子点单光子探测器具有很高的灵敏度, 但是需 要工作在1 K以下极低温环境中, 且器件制备工艺复 杂, 一致性较差, 这限制了它的应用[29].

  • 要实现太赫 兹单光子的探测, CSIP探测器需要满足下面两个条件: (1) 电荷的变化来自于光子的吸收, 热波动对电荷数的 影响可以忽略; (2) 吸收太赫兹光子后导致电子跃迁, 处于激发态的电子要具有较长寿命.

Read more

Summary

CSIP探测器的工作原理

量子点单光子探测器具有很高的灵敏度, 但是需 要工作在1 K以下极低温环境中, 且器件制备工艺复 杂, 一致性较差, 这限制了它的应用[29]. 为此, 2005年 Komiyama课题组[31]又提出了基于半导体双量子阱结 构的电荷敏感型红外光电晶体管(CSIP)探测器. 量子 阱是当两种带隙不同的半导体材料相间排列形成异质 结构时, 形成的具有明显量子限域效应的电子或空穴 的势阱. 量子点单光子探测器具有很高的灵敏度, 但是需 要工作在1 K以下极低温环境中, 且器件制备工艺复 杂, 一致性较差, 这限制了它的应用[29]. 要实现太赫 兹单光子的探测, CSIP探测器需要满足下面两个条件: (1) 电荷的变化来自于光子的吸收, 热波动对电荷数的 影响可以忽略; (2) 吸收太赫兹光子后导致电子跃迁, 处于激发态的电子要具有较长寿命. 如图6(b)所示, 梳状结构的栅极用于 调控上层2DEG, 通过施加负偏置电压, 可以将上层 2DEG分隔成一系列导电小岛, 这些小岛作为下层 2DEG的光敏浮栅. 入射的太赫兹光子被上层某个 2DEG小岛吸收, 岛中的电子发生跃迁并隧穿到下层 2DEG中, 导致下层2DEG导电沟道的电导增加, 但电 子会在很短时间内渡越导电沟道, 渡越时间(τtrans)的典 型值为20 ps. 图 6 (网络版彩图) (a) CSIP探测器的结构示意图; (b) CSIP 探测器的光学显微图片; (c) GaAs/AlGaAs双量子阱异质结 (左)和导带能图(右). 图 7 (网络版彩图) (a) “横向逃逸”CSIP结构; (b) CSIP实际 器件; (c) “横向逃逸”CSIP采用的异质结材料; (d) “横向逃 逸”CSIP导带能级图. 近年来, 表面等离激元(Surface Plasmon Polariton, SPP)结构取代了金属片阵列结构, SPP不仅 满足器件所需的偏振转换需求, 还具有场增强功能.

CSIP探测器的太赫兹单光子测试
SCB和量子电容效应
QCD的工作原理
QCD的读出电路和单光子探测
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call