Abstract

In this study, we report the simulation, fabrication and characterization of a dual-band fractal metamaterial used for terahertz sensing application. By applying the fractal structures of square Sierpinski (SS) curve to the split-ring resonators (SRRs), more compact size and higher sensitivity can be achieved as privileges over conventional SRRs. The in∞uence of difierent geometrical parameters and the order of the fractal curve on the performances are investigated. Then overlayers are added to the fractal SRRs in order to explore the performance of the entire system in terms of sensing phenomenon. The changes in the transmission resonances are monitored upon variation of the overlayer thickness and permittivity. Measured results show good agreement with simulated data. At the second resonance of the second-order SS-SRRs, maximum frequency shifts of 19.8GHz, 26.3GHz and 37.8GHz were observed for a 2m, 4m and 10m thickness of photoresist. The results show good sensitivity of the sensors suggesting they can be used for a myriad of terahertz sensing applications in biology and chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.