Abstract

Terahertz scattering scanning near-field optical microscopy is a robust spectral detection technique with a nanoscale resolution. However, there are still major challenges in investigating the heterogeneity of cell membrane components in individual cells. Here, we present a novel and comprehensive analytical approach for detecting and investigating heterogeneity in cell membrane components at the single-cell level. In comparison to the resolution of the topographical atomic force microscopy image, the spatial resolution of the terahertz near-field amplitude image is 3 times that of the former. This ultrafine resolution enables the compositional distribution in the cell membrane, such as the distribution of extracellular vesicles, to be finely characterized. Furthermore, via extraction of the near-field absorption images at specific frequencies, the visualization and compositional difference analysis of cell membrane components can be presented in detail. These findings have significant implications for the intuitive and visual analysis of cell development and disease evolutionary pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.