Abstract

AbstractReflectarrays offer unique potential for beamforming at terahertz frequencies as they combine the advantages of low‐profile of phased arrays and high‐efficiency of parabolic antennas. However, one challenge associated with reflectarrays is their bandwidth limitation resulting from the nonlinear phase response. To enhance bandwidth, a single‐layer stub‐loaded resonator is proposed for constructing reflectarrays. This resonator design shows a smooth and near‐linear phase response with a complete 360° phase coverage at and around the design frequency. To demonstrate its capability in realizing beamforming, a focusing reflectarray is then constructed using the proposed resonator as a building block. The measured results reveal that the 3 dB relative bandwidths of the reflectarray for the transverse electric (TE)‐ and transverse magnetic (TM)‐polarized excitations are 23.3% and 23.9%, respectively, while retaining an efficiency of 71.9% for the TE polarization and 71.0% for the TM polarization at the center frequency of 1.00 THz. The simulation bandwidth of this proposed focusing reflectarray is over twice that of an existing dielectric resonator reflectarray. The proposed resonator has a potential to enhance the bandwidth of terahertz reflectarrays for various beamforming functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.