Abstract

For a long time, the club of scientists working with terahertz radiation was fairly exclusive. Its “members” included instrumentation aficionados who made customized equipment for probing molecules in the terahertz range (1 THz = 1012 Hz), also known as the far-infrared range. These scientists used light in this portion of the electromagnetic spectrum, which sits between the infrared and microwave regions, for studies in a number of areas such as spectroscopy and astronomy. For example, astronomers have used it to study the abundance of water, carbon monoxide, and oxygen in interstellar clouds. In recent years, however, affordable commercial instruments for generating and detecting terahertz light have become widely available. As a result, the once-exclusive club now includes many researchers who are applying terahertz light to areas that were difficult to study previously. These scientists are harnessing unique analytical abilities of terahertz light. Unlike infrared light, for example, which induces bending

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.