Abstract

AbstractThis paper presents a theoretical model for efficient terahertz (THz) radiation by self-focused amplitude-modulated laser beam in preformed ripple density plasma. The density of plasma is modified due to ponderomotive nonlinearity which arises because of the nonuniform spatial profile of the laser beam in magnetized plasma and leads to the self-focusing of the laser beam. The rate of self-focusing depends on the intensity of the amplitude-modulated beam as well as on the externally applied magnetic field strength. The electron also experiences time-dependent ponderomotive force by the laser beam at modulated frequency. A nonlinear current at THz frequency arises on account of the coupling between the ripple density plasma and nonlinear oscillatory velocity of the electrons. The yield of the generated THz radiation enhances with enhancement in self-focusing of the laser beam and applied magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call